Causal Inference for Recommendation

نویسندگان

  • Dawen Liang
  • Laurent Charlin
  • David M. Blei
چکیده

We develop a causal inference approach to recommender systems. Observational recommendation data contains two sources of information: which items each user decided to look at and which of those items each user liked. We assume these two types of information come from differentmodels—the exposure data comes from a model by which users discover items to consider; the click data comes from a model by which users decide which items they like. Traditionally, recommender systems use the click data alone (or ratings data) to infer the user preferences. But this inference is biased by the exposure data, i.e., that users do not consider each item independently at random. We use causal inference to correct for this bias. On real-world data, we demonstrate that causal inference for recommender systems leads to improved generalization to new data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeted Learning with Daily EHR Data

Electronic health records (EHR) data provide a cost and time-effective opportunity to conduct cohort studies of the effects of multiple time-point interventions in the diverse patient population found in real-world clinical settings. Because the computational cost of analyzing EHR data at daily (or more granular) scale can be quite high, a pragmatic approach has been to partition the follow-up ...

متن کامل

O22 - Asian Americans demonstrate optimal compliance in CDC recommended pediatric vaccine schedule: implication of immunisation in autism causal inference

Methods The CDC recommends one dose of diphtheria toxoids, acellular pertusis and tetanus (Tdap), and pneumococcal vaccines (PCV), two doses of varicella, measles, mumps and rubella (MMR) and three doses of Hepatitis B (HBV), and inactivated poliovirus to be received by age 11-12 years. We assessed age-specific recommendation adherence. Data were examined cross-sectionally on vaccination receiv...

متن کامل

Recommendations as Treatments: Debiasing Learning and Evaluation

Most data for evaluating and training recommender systems is subject to selection biases, either through self-selection by the users or through the actions of the recommendation system itself. In this paper, we provide a principled approach to handling selection biases, adapting models and estimation techniques from causal inference. The approach leads to unbiased performance estimators despite...

متن کامل

DESIGN AND IMPLEMENTATION OF FUZZY EXPERT SYSTEM FOR REAL ESTATE RECOMMENDATION

<span style="color: #000000; font-family: Tahoma, sans-serif; font-size: 13px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px; display: inline !important; float: none; backgro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016